

Line-of-sight with Graph Attention Parser (LGAP) for Math Formulas

Ayush Kumar Shah and Richard Zanibbi Rochester Institute of Technology, NY, USA

LGAP Overview

A visual parser which produces an output SLT from math formula images or handwritten strokes

- 1. Create Line-Of-Sight (LOS) graph over primitives (strokes/CCs)
- 2. Score segmentation, symbol, and relationship hypotheses using a multi-task CNN
- 3. Segment and classify symbols
- 4. Select relationships using a maximum spanning tree with Edmond's algorithm [1]

Advantages:

- 1. Enhanced error diagnosis at primitive level
- 2. Easy interpretability and accelerated inference
- 3. Mitigation of context limitations in previous graphbased models (e.g., QD-GGA [2])

Recognition Model Components

- Inputs: binary query and LOS attention masks
- CNN: builds upon QD-GGA [2], with SE-ResNext backbone and attention modules
- 1D context: 1-by-3 convolution to capture contextual relationships
- Spatial pyramidal pooling: 3 levels (1, 2h, 2v, 3h, 3v)
- Multi-Task Cross Entropy loss with Adam optimizer

$$\delta(N, E) = \sum_{e=1}^{|E|} (CE(e, D) + CE(e, R)) + \sum_{n=1}^{|N|} CE(n, S)$$

- Segmentation: Merge primitives into symbols and average probabilities for merged primitives
- Edmond's arborescence to construct Symbol Layout Tree (SLT), avoiding duplicate edges with identical relationships

LGAP formula parsing example

Modified punctuation (PUNC) ground truth representation

Attention and Context Enhancement

- Query binary masks focus CNN on relevant image regions for specific task
- Additional LOS binary masks provide contextual spatial information from LOS graph neighbors
- Task-specific convolutional blocks (three kernels) act as attention modules for nodes, edges, and LOS masks

Contributions

Improves QD-GGA [2] accuracy while preserving interpretability

- Represent punctuation relationships more consistently
- Additional visual context from LOS graph neighbors
- Spatial pyramidal pooling rather than single-region average pooling of convolutional features

Binary attention masks (nodes) for additional context

Results

MST Model	Symbols		Relationships		Formulas	
	Detect.	+Class	Detect.	+Class	Structure	+Class
LGAP	98.32	95.66	94.85	94.35	89.27	83.27
QD-GGA	98.50	94.54	94.43	93.96	87.77	76.72
LPGA _{RF}	99.34	98.51	97.83	97.56	93.81	90.06
LPGACNN	99.35	98.95	97.97	97.74	93.37	90.89

- Evaluated on 6,830 InftyMCCDB-2 test formula images (matrices and grids removed).
- LGAP takes 25 mins/epoch to train on 12,551 training images and 11 mins 12 secs to process 6,830 test formula images (98.4 ms/formula)

Limitations and Future work

- . Extend evaluation to handwritten datasets
- 2. Explore GNNs to replace the sequential 1D module, which is based on spatial sorting order
- 3. Advance interactions among tasks
- 4. Extend parser for chemical diagrams

